

# Loss of Response OR Partial Response for Patients on Advanced Therapy

## Objective

Achieve and maintain remission with Advanced Therapy.

#### **Patient Population**

Patients diagnosed with inflammatory bowel disease on Advanced Therapy.

### **Highlight Box**

New IBD therapies are continuously becoming available, however the approach to loss of response or partial response for patients on Advanced Therapy remains inconsistent. The main objective is to achieve and maintain remission by dose optimization and reassessment of response to medications and switching therapies as required.

#### Introduction

This CCP recommends a common approach to any IBD patient who is on Advanced Therapy and who is exhibiting symptoms of loss of response or partial response. While initially developed for guidance regarding drug level monitoring and dose optimization for patients losing response to anti-TNF therapies, this CCP also provides suggestions for how to approach patients who are on newer biologics and small molecules. Where applicable, the guidance reflects published data and recommendations established by the global IBD community.





### Confirm clinically relevant active IBD

- Clinical symptoms
- FCP (table 2)/stool testing
- Bloods (Routine, drug trough + antidrug Ab)
- Endoscopy/radiology
- Clinical symptoms
- Ultrasound

Exclude IBS, infection, malignancy and fibrostenotic stricture

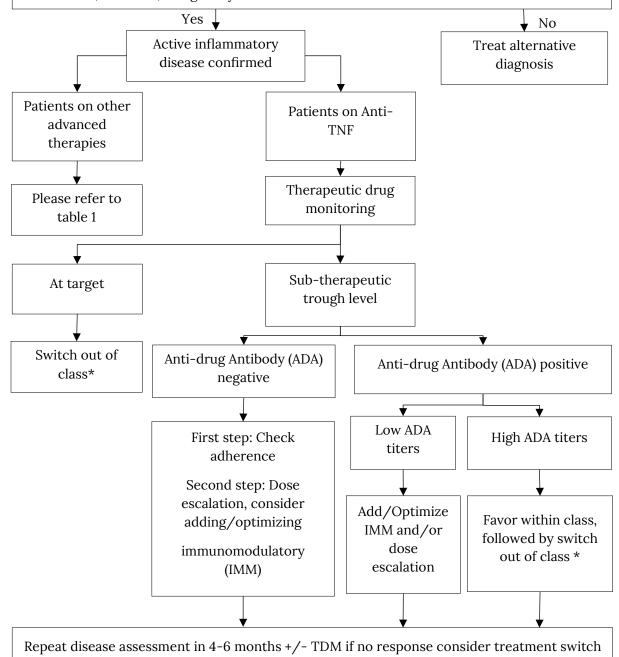







Table 1: Approach to managing other advanced therapies

| Drug         | Dose optimization                                           | Time to reassess                  |
|--------------|-------------------------------------------------------------|-----------------------------------|
| Vedolizumab  | Escalate to q4w dosing*                                     | At the 3 <sup>rd</sup> q4w dosing |
| Ustekinumab  | Escalate to q4w dosing OR At the 3 <sup>rd</sup> q4w dosing |                                   |
|              | request IV reloading dose                                   | months after IV reloading         |
|              |                                                             | dose                              |
| Tofacitinib  | 10mg po BID                                                 | After 8 weeks                     |
| Upadacitinib | 30mg po bid (for those on                                   | After 8 weeks                     |
|              | 15mg qd)                                                    |                                   |
| Risankizumab | N/A                                                         |                                   |
| Ozanimod     | N/A                                                         |                                   |

<sup>\*</sup>Optimization has limited benefit based on evidence.

Always discuss the potential risks associated with changing advanced therapies with the patient, including the risk of a lesser response and potential side effects.

Table 2: Fecal Calprotectin results and clinical approach

| Fecal Calprotectin (μg/g) | Interpretation           | Suggested Management                                    |
|---------------------------|--------------------------|---------------------------------------------------------|
| <50-100                   | Quiescent disease likely | Continue current therapy                                |
| >100-250                  | Inflammation possible    | Investigate (e.g., colonoscopy) to confirm inflammation |
| >250                      | Inflammation likely      | Optimize/switch therapy                                 |

Table 3: Approach to Managing Thiopurine Therapy

| Etiology of<br>Thiopurine Failure | 6-TGN Level<br>(pmol/10 <sup>8</sup><br>erythrocytes) | 6-MMP Level<br>(pmol/10 <sup>8</sup><br>erythrocytes) | 6-MMP/6-TGN<br>Ratio | Proposed Treatment<br>Strategy                                                                                                   |
|-----------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Inadequate dose                   | Low (<230)                                            | Low (<5700)                                           | Normal (4-24)        | Increase dose                                                                                                                    |
| Excessive TPMT                    | Low (<230)                                            | High (>5700)                                          | High (>24)           | TPMT modulation by<br>the addition of<br>allopurinol or 5-ASA,<br>dose splitting,<br>switch to alternative<br>agent, such as MTX |
| Lack of adherence                 | Low (<230)                                            | Low (<5700)                                           | Normal (4-24)        | Verify adherence                                                                                                                 |
| True drug ineffectiveness         | Normal (230-400)                                      | Normal (<5700)                                        | Normal (4-24)        | Alternative therapy                                                                                                              |

5-ASA: Mesalamine

6-MMP-methyl mercaptopurine

6-TGN: 6-thioguanine nucleotides

MTX: Methotrexate

TPMT: Thiopurine methyltransferase





#### References

Papamichael et al. Appropriate Therapeutic Drug Monitoring of Biologic Agents for patients with inflammatory bowel diseases. Clinical Gastroenterology Hepatology. 2019; 17(9):1655-1668. <a href="https://doi.org/10.1016/j.cgh.2019.03.037">https://doi.org/10.1016/j.cgh.2019.03.037</a>

Feuerstein et al. American Gastroenterological Association Institute Guideline on Therapeutic Drug Monitoring in Inflammatory Bowel Disease. Gastroenterology 2017;153(3):827-834. https://doi.org/10.1053/j.gastro.2017.07.032

Mitrev et al. Review article: consensus statements on therapeutic drug monitoring of anti-tumour necrosis factor therapy in inflammatory bowel diseases. Aliment Pharmacol Ther 2017; 46(11-12):1037-1053. <a href="https://doi.org/10.1111/apt.14368">https://doi.org/10.1111/apt.14368</a>

Bressler et al. Clinician's guide to the use of fecal calprotectin to identify and monitor disease activity in inflammatory bowel disease. Canadian Journal of Gastroenterology and Hepatology 2015;29(7):369-372. <a href="https://doi.org/10.1155/2015/852723">https://doi.org/10.1155/2015/852723</a>

Kopylov et al. Therapeutic drug monitoring in inflammatory bowel disease. Annals of Gastroenterology 2014;27(4):304–312. PMCID: <u>PMC4188926</u>

Turner et al. STRIDE-II: An Update on the Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE) Initiative of the International Organization for the Study of IBD (IOIBD): Determining Therapeutic Goals for Treat-to-Target strategies in IBD. Gastroenterology 2021 Apr;160(5):1570-1583. <a href="https://doi.org/10.1053/j.gastro.2020.12.031">https://doi.org/10.1053/j.gastro.2020.12.031</a>

